RSS

El estrato corneo.

14 jul

La envoltura proteínica córnea es una compleja estructura que sustituye a la membrana plasmática fosfolipídica que poseen los queratinocitos. Conocida en la bibliografía en inglés como cornified envelope, sabemos que su presencia es muy importante en los corneocitos, ya que forma parte de los componentes que permiten desarrollar la función barrera del estrato córneo. La superficie corporal está recubierta por millones de corneocitos que aíslan eficazmente las células epidérmicas viables del medio externo que se caracteriza por su elevada sequedad, su importante presión de oxígeno y su potencial capacidad de desarrollar una agresión química y microbiológica. Normalmente, los corneocitos superpuestos alcanzan 20 estratos celulares, aunque en las zonas cutáneas plantares y palmares pueden contabilizarse hasta 1. 000. Diversas patologías cutáneas (que cursan como una hiperqueratosis) también incrementan de forma muy acusada esta superposición de corneocitos. La función barrera que es propia del estrato córneo se considera que se desarrolla en los estratos más profundos de los corneocitos. Todas las células córneas poseen una forma muy aplanada, apropiada para su óptima superposición. En los corneocitos abunda una trama de filamentos de queratinas muy densamente agregados por la presencia de otra proteína, denominada filagrina. Tanto las queratinas como la filagrina forman el modelo queratínico (keratina pattern) que sustituye totalmente el citoplasma, el núcleo los diversos orgánulos propios de los queratinocitos de la epidermis. Este contenido exclusivamente proteínico de las células córneas se halla rodeado por una envoltura proteínica densa, el antes citado cornified envelope, que sustituye a la membrana plasmática fosfolipídica de los queratinocitos. La diferenciación epidérmica finaliza en una zona de transición, en la que unos pocos queratinocitos granulosos se suicidan mediante la actividad de las enzimas hidrolíticas contenidas en los lisomas: proteasas, nucleasas, fosfolipasas, etc. Es muy evidente que esta peculiar membrana está formada por numerosas proteínas entrelazadas mediante enlaces cruzados covalentes, cuyo espesor se sitúa en unos 10nm, aunque en su cara externa la envoltura posee una importante cobertura lipídica, de unos 5 nm de grosor , distribuida como una empalizada fijada también mediante enlaces covalentes 1. Las células córneas superpuestas conservan unos puntos de fijación denominados corneodesmosomas, cuya composición glucoproteínica sólo coincide en parte con la de los desmosomas que conectan entre sí a los queratinocitos. Los espacios extracelulares que se hallan entre corneocitos contiguos, y que no están ocupados por los corneodesmososmas, contienen una sustancia cementante exclusivamente lipídica, de grosor muy variable , que se caracteriza por su agregación hidrófoba flexible y por la ausencia de enlaces covalentes entre sus diversas moléculas . Estos lípidos (moderadamente polares) se distribuyen formando estructuras lamelares superpuestas que conectan fácilmente con la empalizada lipídica situada en la zona externa del cornified envelope.
Este breve resumen nos permite aceptar la vital función barrera que desempeñan los corneocitos situados en los niveles más profundos del estrato córneo. Todos los componentes citados son decisivos en la defensa superficial de nuestro tejido cutáneo. Esta capacidad aislante y flexible del estrato córneo no sólo está implicada en nuestra salud, sino que también es muy importante para conservar una imagen estética óptima de nuestro tejido cutáneo. Vías metabólicas de la diferenciación epidérmica
En la epidermis hay queratinocitos en tres niveles o estratos celulares bien diferenciados:
* El estrato basal, en parte proliferante, con células de forma casi cúbica, situado junto a la membrana basal y por tanto expuesto a un importante aporte nutricio desde los capilares sanguíneos de las papilas dérmicas subyacentes. A este nivel los queratinocitos sólo sintetizan filamentos intermedios de queratinas, tipos K 5 y K 14, incapaces de agregarse para formar filamentos gruesos, ya que éstos podrían dificultar los procesos de mitosis.
* El estrato espinoso, en posición suprabasal, formado por células globulosas desplazadas tras la proliferación del estrato basal. Sólo ocasionalmente pueden proliferar, lo que explica que se observen desmosomas muy densos, en los que se visualizan filamentos gruesos de queratinas, con aspecto de espinas.
Estas células inician el proceso de diferenciación, y sintetizan los primeros gránulos de recubrimiento de la membrana (conocidos como corpúsculos de Odland). En el interior de estos orgánulos se acumulan enzimas y glucolípidos precursores de los que requiere el estrato córneo.
* El estrato granuloso, formado por células más aplanadas, cuyo relativamente escaso
contenido acuoso requiere la presencia de osmolitos (para retener unos valores hídricos
que permitan una importante actividad de síntesis). El proceso de diferenciación se acelera, ya que se incrementa de forma espectacular el número de corpúsculos de Odland, se sintetizan queratinas de tipo K 1 y K 10 (capaces de agregarse en presencia de filagrina ) y aparecen numerosas granulaciones de aspecto amorfo , en las que se acumulan diferentes proteínas.
La diferenciación epidérmica finaliza en una zona de transición, en la que unos pocos
queratinocitos granulosos se suicidan mediante la actividad de las enzimas hidrolíticas
contenidas en los lisomas: proteasas, nucleasas, fosfolipasas, etc. Estas enzimas destruyen las proteínas que no requieren los corneocitos, así como el núcleo celular y los diversos orgánulos que tienen membranas fosfolipídicas (incluida la propia membrana plasmática del queratinocito granuloso).
Formación del estrato córneo
Las células córneas son discos de contorno casi poligonal, con un diámetro de unas 30 micras y un grosor de unas 0, 7 micras. Su envoltura densa proteínica y lipídica, de unos 15 nm de grosor, actúa como una membrana y se halla en contacto con un número variable de estructuras lamelares lipídicas (entre 4 y 20 estructuras superpuestas). Todos estos materiales tienen una marcada hidrofobicidad y han sido sintetizados por los queratinocitos durante su proceso de diferenciación. La función barrera del estrato córneo profundo depende de esta eficacia sintética, la que a su vez es muy dependiente de la cinética epidérmica y de la actividad metabólica de los queratinocitos. Salvo situaciones patológicas, una epidermis juvenil se renueva más rápidamente y sintetiza todos estos componentes córneos de forma más eficiente que una epidermis senil. La renovación epidérmica depende de la descamación del estrato córneo más superficial y es imperceptible, pero diversas alteraciones pueden dificultar el desprendimiento de las células, lo que causa que se liberen en la superficie cutánea masas de corneocitos fácilmente visibles. Durante la zona de transición se detectan las
siguientes alteraciones:
* Cambios en la composición de algunas glucoproteínas desmosómicas, lo que convierte a estas uniones en corneodesmosomas más sensibles a la actividad hidrolítica enzimática que requiere el desprendimiento de los corneocitos superficiales.
* Acumulación de los numerosos corpúsculos de Odland en la cara interna de la membrana plasmática superior: esto permite la fusión de sus membranas y el vaciado de su contenido glucolipídico al espacio extracelular; simultáneamente se eliminan por vía enzimática los residuos de glucosa.
* Degradación de todos los orgánulos celulares y de la propia membrana plasmática , debido a la acción de lipasas y de proteasas.
* Los gránulos de queratohialina liberan a la proteína filagrina , la que agrega a los gruesos filamentos de queratina formando una trama proteínica densa y muy hidrófoba en el interior de los corneocitos.
* Simultáneamente se inicia una compleja estructura, en la que se utilizan las restantes
proteínas de los citados gránulos de queratohialina 2. Su ensamblaje está ligado de
forma decisiva a la activación de diversas transglutaminasas. Transglutaminasas epidérmicas Las transglutaminasas (TGase) son una familia de enzimas calciodependientes que catalizan la formación de enlaces covalentes denominados puentes isopeptídicos. Estos son enlaces N- gamma – glutamil – lisina, muy estables y
resistentes, que se producen mediante la reacción de un residuo glutámico de una
proteína con un grupo amino de una lisina. Su actividad es vital para que se produzcan
algunos de los más decisivos cambios que requiere la transformación de las células vivas granulosas en células muertas córneas. Las TGase 1 y Tgase 3 son responsables de que se forme la envoltura densa proteínica que rodea a los corneocitos. Por su parte, la TGase 5 desarrolla una actividad más centrada en el proceso de diferenciación de los queratinocitos epidérmicos. TGase 1 Inicia su expresión en las células espinosas , y se fija en la membrana plasmática de los queratinocitos gracias a la presencia de determinados residuos « acilo » ( en especial miristato y palmitato ) que se hallan situados en la proximidad del grupo amino terminal de esta enzima 3 . La incorporación de una de estas cadenas grasas se produce en un dominio aceptor (cluster) formado por cinco residuos de cisteína 4. Además, con frecuencia, el grupo amino terminal de la TGase 1 se une a una molécula de la involucrina (proteína que forma parte de los gránulos de queratohialina), con lo que esta proteína también se puede hallar en contacto directo con la membrana plasmática de la célula granulosa.
Las moléculas de TGase 1 ancladas en la membrana presentan una proteólisis que las
fracciona a medida que se incrementa la diferenciación de estas células y se aproximan
a la zona de transición 5. Simultáneamente, el fragmento anclado de menor peso molecular (unos 10 KDa) acelera la diferenciación celular. Esta enzima también sufre una fosforilación sobre una serina próxima al cluster de cisteínas 6, lo que sólo se detecta cuando ha finalizado la proliferación de los queratinocitos, y se admite que este proceso favorece su inclusión en la membrana plasmática. TGase 1 requiere calcio como cofactor, que se incrementa en el interior de los queratinocitos
que se sitúan en un nivel suprabasal. Experimentalmente se ha comprobado 7 que
los ésteres del forbol, así como al ácido retinoico, incrementan el calcio intracelular, la
expresión de TGase 1, su actividad y el nivel de sustratos sobre los que puede actuar la enzima. Algunas moléculas situadas en las proximidades de la membrana plasmática regulan el comportamiento de TGase 1. La involucrina, uno de los sustratos de la enzima, puede formar un enlace cruzado, sobre todo con la glutamina 496 8. Esta proteína, en presencia de una omega – hidroxiceramida, es catalizada por la enzima para formar un enlace esterlipídico entre algunas glutaminas y el hidroxilo de la citada ceramida 9. Esta actividad es importante para que se forme el cornified envelope.
TGase 3 Sólo se ha localizado en el citoplasma de las células epidérmicas más superficiales. Tiene cuatro dominios plegados y un complejo núcleo catalítico formado por 15 cadenas peptídicas lineares que se intercalan con 15 péptidos alfahelicoidales. En realidad, la actividad enzimática reside en una tríada formada por cisteína, histidina y ácido aspártico. Pero requiere la presencia de tres iones de calcio para modificar su estructura y conformar un canal abierto, de forma cónica, que alcanza a la tríada catalítica 10. TGase 3 no sólo cataliza la formación de enlaces isopeptídicos entre proteínas que son sus sustratos naturales, sino que también interviene en enfermedades
cutáneas autoantigénicas, como la dermatitis heptiforme Además, en presencia de nucleótidos de guanina (GTP), el canal cónico permanece cerrado y la enzima inactiva , aunque la hidrólisis de GTP en GDP causa la recuperación de su actividad.
TGase 3 no sólo cataliza la formación de enlaces isopeptídicos entre proteínas que son sus sustratos naturales, sino que también interviene en enfermedades cutáneas autoantigénicas, como la dermatitis heptiforme.
TGase 5 tampoco se halla fijada a las membranas plasmáticas, pero su presencia es evidente en la matriz nuclear y en el cito esqueleto de los queratinocitos espinosos y granulosos11. Es evidente que posee una actividad reguladora del proceso de diferenciación epidérmica, muy ligada al nivel de calcio intracelular. La mayoría de las proteínas presentes en los gránulos de queratohialina son sustratos con los que cataliza la formación de puentes isopeptídicos. Curiosamente, la loricrina es una proteína en la que estos enlaces no sólo permiten la formación de multímeros, sino que dan lugar a la formación de enlaces cruzados internos entre los residuos de los aminoácidos glutamina y lisina 12. Se está investigando la regulación catalítica que pueden aportar los nucleótidos GTP y ATP. Pero es evidente que niveles excesivos de TGase 5 influyen en diversas enfermedades epidérmicas; por ejemplo, contribuyen a que se exprese un fenotipo hiperqueratótico en la ictiosis.
Bibliografía
1. Nemes Z, Marekov LN, Fesus L, Steinert PM. Funcion de la trnsglutaminaza 1, 1996:

About these ads
 
Deja un comentario

Publicado por en julio 14, 2011 en Uncategorized

 

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

 
Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

A %d blogueros les gusta esto: